A Cytotoxic Saponin with Two Monoterpenoids from Albizia julibrissin

Kun ZOU, Jing Rong CUI, Yu Ying ZHAO*, Ru Yi ZHANG¹, Jun Hua ZHENG¹

¹Department of Natural Medicines, Beijing Medical University, Beijing 100083. ²National Research Laboratories of Natural and Biominetic Drug, Beijing Medical University, Beijing 100083

Abstract: A new cytotoxic saponin(1), Julibrosides J27, was isolated from the stem barks ofAlibizia. julibrissinby chromatography, and the structure was elucidated as $3-O-\beta$ -D-xylopyranosyl-(1 \rightarrow 2)- β -D- fucopyranosyl - (1 \rightarrow 6) - β - D-glucopyranosyl - 21-O-[(6S)-2-trans-2-hydroxymethyl-6-methyl-6-O-[4-O-((6S)-2-trans-2-hydroxylmethy 6- methyl - 6-hydroxy)-2,7-octadienoyl- β -D-quinovopy--ranosyl]-2,7-octadienoyl- β -D-quinovopy--ranosyl]-2,7-octadienoyl- $(1\rightarrow3)$ -[(α -L-arabinofuranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyrnosyl ester based on spectral and chemical evidences.

Keyword: Albizia julibrissin, Leguminosae, triterpenoid saponin, Julibroside J₂₇, cytotoxic activity.

The dried stem barks of *Albizia julibrissin* have been specified in Chinese Pharmacopeia as a sedative agent. In the previous research several novel saponins were reported¹⁻³.T. Ikeda, *et al*⁴ isolated three similar saponins almost at the same time. In our further studies on the 95% ethanol extract from the plant, a new saponin **1** was obtained. This paper involves the isolation and structural elucidation of the new saponin.

Air-dried powdered stem barks (13.5 kg.) were extracted with 95% ethanol. The ethanol extract (1140g) was suspended in H₂O, then extracted with CHCl₃, EtOAc and *n*-BuOH, successively. The *n*-BuOH part was subject to Sephadex LH-20 and silica gel column (normal and reversed phases) chromatography, to give a white powder. The white powder was separated by repeated HPLC to afford **1** (164mg).

1 exhibited positive Liebermann-Burchard and Molish reactions, indicating its skeleton of triterpenoid saponin. On acidic hydrolysis with 2.0 mol/L HCl, **1** gave the sapogenin, acacic acid lactone, which was identical with the authentic sample in several TLC conditions. And the structure was confirmed by the ¹H NMR data, δ 5.62 (1H, br s, H-12), 3.49 (1H, dd, J=2.2, 12.9 Hz, H-3 α), 3.42 (1H, dd, J=1.8, 11.7 Hz, H-18 α) and seven single methyl proton signals at δ 1.86, 1.28, 1.15, 1.08, 1.03, 1.01 and 0.96. The ¹³C NMR signals for genin were in good agreement with those of the aglycone moiety of Julibroside **II** and **J**₂ (**Table 1**)⁴.

Kun ZOU et al.

On acidic hydrolysis of **1** glucose, xylose, arabinose, quinovose, fucose and rhamnose were detected to be present in the hydrolysate on PC and analytical HPLC in comparison with the authentic samples. The ¹H NMR spectrum showed eight anomeric proton signals at 5.08 (1H, d, J=6.8Hz, H-xyl-1), 4.98 (1H, d, J=7.2Hz, H-fuc-1), 4.89 (1H, d, J=6.6Hz, H-glc-1), δ 6.24 (1H, s, H-araf-1), 6.03 (1H, d, J=7.7Hz, H-glc' -1), 5.87 (1H, br s, H-rha-1), 5.30 (1H, d, J=7.3Hz, H-glc"-1), 4.84 (1H, d, J=5.2Hz, H-qui-1), and three methyl proton signals of deoxysugars at δ 1.74 (3H, d, J=6.2Hz, H-rha-6), 1.50 (3H, d, J=7.2Hz, H-fuc-6) and 1.34 (3H, d, J=6.2Hz, H-qui-6). The ¹³C NMR spectrum showed the corresponding anomeric carbon-13 signals at δ 106.2,103.3,106.2, 95.7, 101.8, 111.0, 105.7, 99.3 and methyl carbon-13 signals at δ 18.8, 17.1 and 18.8. In comparison of the ¹H and ¹³C NMR spectra for **1** with those of Julibroside **II** (2)⁴, except the absence of a group of signals for β -D quinovopyranosy1, all of the signals due to the sugar moieties of **1** were almost superimposable on those of **II** (**Table 2**).

Figure 1 The structure of the Saponins

Two groups of proton signals due to monoterpenoid moieties were observed in ¹H NMR spectra of **1**: one group of proton signals at δ 7.03 (1H, t, J=7.8Hz), 6.19 (1H, dd, J=11.3, 17.1Hz), 5.39 (1H, d, J=17.1Hz), 5.20 (1H, d, J=11.3Hz), 4.70 (2H, s), 1.81 (2H, t, J=8.2Hz), 1.48 (3H, s) and another group of proton signals at δ 7.23 (1H, t, J=7.6Hz), 6.07 (1H, dd, J=10.6, 17.1Hz), 5.50 (1H, d, J=17.1Hz), 5.11 (1H, d, J=10.6Hz), 4.75 (2H, s). And two groups of carbon-13 signals for MT and MT' (see **Table 1**) were observed also, which are identical with those of MT and MT' of Julibroside **J**₂(**3**)³.

The above analysis were confirmed by the FAB-MS results m/z: 2065 $[M+Na+2]^+$. Thus, the structure of compound **1** was determined as $3-O-\beta$ -D-xylopyranosyl- $(1\rightarrow 2)-\beta$ -D-fucopyranosyl- $(1\rightarrow 6)-\beta$ -D-glucopyranosyl- $21-O-\{(6S)-2-trans-2-hydroxylmethyl-6-methyl-6-O-[4-O-((6S)-2-trans-2-hydroxymethyl)-6-dimethyl-6-hydroxy-2,7-octadienoyl)-<math>\beta$ -D-quinovopyranosyl]-2,7-octadienoyl}-acacic acid -28 - $O-\beta$ -D-gluco-

-pranosyl-(1 \rightarrow 3)-[(α -L-arabinofuranosyl-(1 \rightarrow 4)]- α -L-rhamnopyranosyl -(1 \rightarrow 2)- β -D-glucopyrnosyl ester, named as Julibroside J₂₇.

С	1	2	3	С	1	2	3
1	39.0	38.9	39.2	MT			
2	26.8	26.8	26.9	1	167.5	168.2	167.6
3	88.8	88.8	88.4	2	133.8	127.8	133.9
4	39.6	39.5	39.7	3	146.5	142.9	146.3
5	56.1	56.0	56.1	4	23.5	23.7	24.0
6	18.7	18.7	18.4	5	41.0	40.2	41.1
7	33.6	33.6	33.8	6	79.7	79.7	79.8
8	40.2	40.1	40.3	7	144.0	143.8	144.0
9	47.2	47.1	47.3	8	114.9	115.5	115.1
10	37.1	37.0	37.3	9	56.3	12.6	56.6
11	23.7	23.9	23.9	10	24.0	23.5	23.6
12	123.1	123.1	123.1				
13	143.3	143.7	143.5				
14	42.0	41.9	42.2				
15	35.9	35.6	36.0				
16	73.9	73.6	73.9	MT ′			
17	51.6	51.7	51.8	1	167.6	168.2	167.7
18	40.8	40.8	40.9	2	133.4	128.3	133.4
19	47.9	47.7	48.1	3	145.2	143.6	145.3
20	35.4	35.2	35.5	4	23.9	23.7	24.0
21	77.2	76.5	76.9	5	41.9	40.4	42.0
22	36.4	36.2	36.5	6	72.2	80.0	72.3
23	28.2	28.2	28.4	7	146.5	143.8	146.6
24	15.9	15.8	15.9	8	111.7	115.2	111.7
25	17.1	17.0	17.5	9	56.3	12.6	56.6
26	17.4	17.3	17.5	10	28.5	23.6	28.5
27	27.3	27.2	27.3				
28	174.4	174.8	174.5				
29	29.2	29.0	29.2				
30	19.1	19.1	19.3				

 Table 1.
 ¹³C NMR data for sapogenin and MT, MT' (py-d₅)

Julibroside J_{27} exhibited good inhibitory action against KB cell line with ED₅₀ 0.6µM, and good inhibitory action against Bel cell line with ED₅₀ 5.0µM. But it showed no marked inhibitory action against HL-60 cell line with the ED₅₀ more than 20µM *in vitro*.

Kun ZOU et al.

С	1	2	3	С	1	2	3
glc 1	106.2	106.4	106.6	rha 1	101.8	101.7	101.7
2	76.8	75.0	77.1	2	70.6	70.4	70.9
3	78.4	77.8	78.5	3	82.0	81.7	82.2
4	72.6	71.9	72.3	4	79.0	78.8	78.9
5	77.2	77.3	77.8	5	69.2	69.1	69.2
6	69.5	69.6	69.6	6	18.8	18.8	18.8
fuc 1	103.3	103.1	arap	araf 1	111.0	110.5	111.1
2	82.0	81.8	102.4	2	84.4	83.8	84.3
3	75.4	74.8	80.2	3	78.4	78.0	78.5
4	72.2	72.3	72.6	4	85.4	85.1	85.6
5	71.3	71.2	67.5	5	62.6	62.3	62.8
6	17.1	17.1	64.3	glc″1	105.7	105.4	105.7
xyl 1	106.2	106.4	106.1	2	75.3	75.1	75.7
2	75.6	75.6	75.5	3	78.4	77.8	78.6
3	78.2	77.8	77.3	4	71.7	71.2	72.1
4	70.8	70.4	70.8	5	78.4	77.8	78.5
5	67.3	66.9	67.2	6	62.8	61.8	63.0
glc′1	95.7	95.3	95.7	qui 1	99.3	99.1	99.3
2	77.1	76.3	76.8	2	75.5	75.5	75.2
3	77.5	77.6	78.1	3	75.4	75.4	75.6
4	71.1	70.8	71.7	4	77.1	77.1	77.6
5	79.0	78.4	78.9	5	70.6	70.1	70.3
6	62.0	62.3	62.4	6	18.8	18.3	18.8
				qui′1		99.0	
				2		75.1	
				3		78.0	
				4		77.0	
				5		72.3	
				6		18.3	

 Table 2
 ¹³C NMR
 data for sugar moieties (py-d₅)

Acknowledgment

This program was supported by the National Natural Science Foundation of China. The NMR spectra were measured by Dr.Tu Guangzhong, Beijing Microchemistry Institute.

References

1. L. B. Ma, G. Z. Tu, S. P.Chen, Carbohydrate Research, 1996, 281, 35.

S.P.Chen, R.Y.Zhang, L. B.Ma, *Acta Pharmaceutica Sinica*, **1997**, *32*, 110.
 K. Zou, Y.Y.Zhao, GZ.Tu, R.Y. Zhang, *J.Asia.Nat.Prod.Res*, **1998** *1*, 59.

4. T. Ikeda, S. Fujiwara, J. Kinjo, Bull. Chem. Soc. Jpn. 1995 68, 3483.

Received 15 July 1999